Topics in Corner Scattering: Non-Scattering Waves, Potential Probing with a Single Incident Wave, and the Interior Transmission Problem

Eemeli Blåsten

Institute for Advanced Study, The Hong Kong University of Science and Technology

NCTS PDE and Analysis Seminar

National Center for Theoretical Sciences, National Taiwan University

March 9, 2017

Lord Rutherford's gold-foil experiment

Rutherford experiment's conclusions

 $measurement + a \text{-} priori \ information = conclusion$

Fixed frequency scattering

The total wave u satisfies

$$(\Delta + k^2(1+V))u = 0,$$

V models a perturbation of the background,

$$u = u^{i}(x) + u^{s}(x)$$
incident wave scattered wave

=

Mathematical scattering theory: measurements

Measurement: A_{μ^i} is the far-field pattern of the scattered wave

$$u^{s}(x) = \frac{e^{ik|x|}}{|x|^{(n-1)/2}} A_{u^{i}}\left(\frac{x}{|x|}\right) + \mathcal{O}\left(\frac{1}{|x|^{n/2}}\right)$$

Inverse problem

Given the map $u^i \mapsto A_{u^i}$, recover V or its support Ω .

Early methods (< 85')

optimization and minimization methods

Inverse problem

Given the map $u^i \mapsto A_{u^i}$, recover V or its support Ω .

Early methods (< 85')

optimization and minimization methods

Sampling methods

- gives condition on measurements for $x \in \operatorname{supp} V$
- compared to before: fast! works reliably!

Sampling methods

96 Colton – Kirsh: linear sampling method (points)

Sampling methods

- 96 Colton Kirsh: linear sampling method (points)
- 98 Ikehata: probing method (curve)

Sampling methods

- 96 Colton Kirsh: linear sampling method (points)
- 98 Ikehata: probing method (curve)
- ...Luke, Potthast, Sylvester, Kusiak: range test, no response test (sets)

Factorization method

Sampling methods gave only¹ sufficient conditions for $x \in \text{supp } V$.

¹except Ikehata's probing method

Factorization method

Kirsch 90's, Grinberg 00's: factorization method. Gives *necessary and sufficient* conditions.

Factorization method

Idea:

$$u^{i}(x) = \int_{\mathbb{S}^{n-1}} e^{ik\theta \cdot x} g(\theta) d\sigma(\theta), \qquad g \in L^{2}(\mathbb{S}^{n-1})$$
 $u^{s}(x) = rac{e^{ik|x|}}{|x|^{(n-1)/2}} A_{g}\left(rac{x}{|x|}
ight) + \mathcal{O}\left(rac{1}{|x|^{n/2}}
ight)$

the far-field operator

$$F: L^2(\mathbb{S}^{n-1}) \to L^2(\mathbb{S}^{n-1}), \qquad Fg = A_g$$

is factored

$$F = G T G^*$$

G compact, T isomorphism. The range of G can be characterized and gives supp V.

Everything solved?

Everything solved?

NO!

If ker $F \neq \{0\}$ then the above methods fail!

Everything solved?

NO!

If ker $F \neq \{0\}$ then the above methods fail!

 $\exists g \in \ker F \text{ implies } \exists v : \Omega \to \mathbb{C}$

$$egin{aligned} & (\Delta+k^2)v=0, & \Omega \ & (\Delta+k^2(1+V))u=0, & \Omega \ & u-v\in H^2_0(\Omega) \end{aligned}$$

 k^2 is an interior transmission eigenvalue (ITE)

Kernel of scattering operator

Let w^i be the incident wave

$$w^{i}(x) = \int_{\mathbb{S}^{n-1}} e^{ik\theta \cdot x} g(\theta) d\sigma(\theta)$$

and assume $g \in \ker F$. Then $A_g \equiv 0$ for the scattered wave w^s .

Kernel of scattering operator

Let w^i be the incident wave

$$w^{i}(x) = \int_{\mathbb{S}^{n-1}} e^{ik\theta \cdot x} g(\theta) d\sigma(\theta)$$

and assume $g \in \ker F$. Then $A_g \equiv 0$ for the scattered wave w^s .

Rellich's lemma and unique continuation imply $w^s(x) = 0$ for $x \in \mathbb{R}^n \setminus \text{supp } V$.

Kernel of scattering operator

Let w^i be the incident wave

$$w^{i}(x) = \int_{\mathbb{S}^{n-1}} e^{ik\theta \cdot x} g(\theta) d\sigma(\theta)$$

and assume $g \in \ker F$. Then $A_g \equiv 0$ for the scattered wave w^s .

Rellich's lemma and unique continuation imply $w^s(x) = 0$ for $x \in \mathbb{R}^n \setminus \text{supp } V$.

Hence $v = w^i$ and $u = w^i + w^s$ solve the interior transmission problem.

- ▶ 86', 88' Kirsch, Colton-Monk: ITE problem posed
- 89', 91' Colton-Kirsch-Päivärinta, Rynne-Sleeman: discreteness of ITE

- ▶ 86', 88' Kirsch, Colton-Monk: ITE problem posed
- 89', 91' Colton-Kirsch-Päivärinta, Rynne-Sleeman: discreteness of ITE
- ▶ 91'-08' NOTHING...

- ▶ 86', 88' Kirsch, Colton-Monk: ITE problem posed
- 89', 91' Colton-Kirsch-Päivärinta, Rynne-Sleeman: discreteness of ITE
- ▶ 91'-08' NOTHING...
- ▶ 07', 09' Cakoni–Colton–Monk, Cakoni–Colton–Haddar: qualitative information about V from ITE's
- > 08' Päivärinta–Sylvester: existence for general scatterers
- > 10' Cakoni–Gintides–Haddar: infinitely many ITE's
- 10' Cakoni–Colton–Haddar: ITE's can be deduced from far-field data
- 10'+: explosion of interest

- ▶ 86', 88' Kirsch, Colton-Monk: ITE problem posed
- 89', 91' Colton-Kirsch-Päivärinta, Rynne-Sleeman: discreteness of ITE
- ▶ 91'-08' NOTHING...
- ▶ 07', 09' Cakoni–Colton–Monk, Cakoni–Colton–Haddar: qualitative information about V from ITE's
- > 08' Päivärinta–Sylvester: existence for general scatterers
- > 10' Cakoni–Gintides–Haddar: infinitely many ITE's
- 10' Cakoni–Colton–Haddar: ITE's can be deduced from far-field data
- 10'+: explosion of interest
- interest shifting to "Steklov eigenvalues"

Interior transmission eigenvalues VS sampling methods

Recall: ker $F \neq \{0\} \implies k^2$ ITE

Sampling method users avoid ITE's

Are they too careful?

Interior transmission eigenvalues VS sampling methods

Recall: ker $F \neq \{0\} \implies k^2$ ITE

Sampling method users avoid ITE's

Are they too careful?

► Colton-Monk 88: supp V compact, V radial, k^2 ITE ⇒ ker $F \neq \{0\}$ Interior transmission eigenvalues VS sampling methods

Recall: ker $F \neq \{0\} \implies k^2$ ITE

Sampling method users avoid ITE's

Are they too careful?

- ► Colton-Monk 88: supp V compact, V radial, k^2 ITE ⇒ ker $F \neq \{0\}$
- ▶ Regge, Newton, Sabatier, Grinevich, Manakov, Novikov 50's - 90's: radial potentials transparent at a fixed k² i.e. ⇒ ker F = L²(Sⁿ⁻¹)

Corner scattering

B.–Päivärinta–Sylvester 14: V = χ_{[0,∞[ⁿφ, φ(0) ≠ 0 always scatters, despite having interior transmission eigenvalues}

Corner scattering

B.–Päivärinta–Sylvester 14: V = χ_{[0,∞[ⁿφ, φ(0) ≠ 0 always scatters, despite having interior transmission eigenvalues}

$$k^2$$
 ITE and ker $F = \{0\}$

Proof sketch

Rellich's theorem and unique continuation imply

$$k^2 \int V u^i u_0 dx = 0$$

 $\text{if } (\Delta+k^2(1+V))u_0=0 \text{ near } \operatorname{supp} V.$

Proof sketch

Rellich's theorem and unique continuation imply

$$k^2 \int V u^i u_0 dx = 0$$

if $(\Delta + k^2(1 + V))u_0 = 0$ near supp V. In simple case

$$u^{i}(x) = u^{i}(0) + u^{i}_{r}(x)$$

$$u_{0}(x) = e^{\rho \cdot x} (1 + \psi(x))$$

$$V(x) = \chi_{[0,\infty[^{n}(x)]}(\varphi(0) + \varphi_{r}(x))$$

Proof sketch

Rellich's theorem and unique continuation imply

$$k^2 \int V u^i u_0 dx = 0$$

if $(\Delta + k^2(1 + V))u_0 = 0$ near supp V. In simple case

$$u^{i}(x) = u^{i}(0) + u^{i}_{r}(x)$$

$$u_{0}(x) = e^{\rho \cdot x} (1 + \psi(x))$$

$$V(x) = \chi_{[0,\infty[^{n}(x)]}(\varphi(0) + \varphi_{r}(x))$$

Hölder estimates give

$$C\left|\varphi(0)u^{i}(0)\right|\left|\rho\right|^{-n} \leq \left|\varphi(0)u^{i}(0)\int_{[0,\infty[^{n}]}e^{\rho\cdot x}dx\right| \leq C\left|\rho\right|^{-n-\delta}$$

$$\text{if } \|\psi\|_{p} \leq C \left|\rho\right|^{-n/p-\varepsilon}.$$

Newer corner scattering results

- Päivärinta–Salo–Vesalainen: 2D any angle, 3D almost any spherical cone
- Hu–Salo–Vesalainen: smoothness reduction, new arguments, polygonal scatterer probing
- Elschner-Hu: 3D any domain having two faces meet at an angle

Newer corner scattering results

- Päivärinta–Salo–Vesalainen: 2D any angle, 3D almost any spherical cone
- Hu–Salo–Vesalainen: smoothness reduction, new arguments, polygonal scatterer probing
- Elschner–Hu: 3D any domain having two faces meet at an angle

Injectivity of support probing:

Theorem

Let P, P' be convex polygons and $V = \chi_P \varphi$, $V = \chi_{P'} \varphi'$ for admissible functions φ, φ' . Then

$$\mathsf{P}
eq \mathsf{P}' \implies \mathsf{F}_V(g)
eq \mathsf{F}_{V'}(g) \quad \forall g
eq 0$$

Any *single* incident wave determines P in the class of polygonal penetrable scatterers.

Stability of polygonal scatterer probing

Theorem (B., Liu, preprint)

Let u^i be an incident wave with $u^i(x) \neq 0$ and let $V = \chi_P \varphi$, $V' = \chi_{P'} \varphi'$ be admissible. If

$$\|A_{u^i} - A'_{u^i}\|_{L^2(\mathbb{S}^{n-1})} < \varepsilon$$

then

$$d_{H}(P, P') \leq C(\ln \ln ||A_{u^{i}} - A'_{u^{i}}||_{2}^{-1})^{-\eta}$$

for some $\eta > 0$.

Stability of polygonal scatterer probing

Theorem (B., Liu, preprint)

Let u^i be an incident wave with $u^i(x) \neq 0$ and let $V = \chi_P \varphi$, $V' = \chi_{P'} \varphi'$ be admissible. If

$$\|A_{u^i} - A'_{u^i}\|_{L^2(\mathbb{S}^{n-1})} < \varepsilon$$

then

$$d_{H}(P,P') \leq C(\ln \ln \|A_{u^{i}} - A'_{u^{i}}\|_{2}^{-1})^{-\eta}$$

for some $\eta > 0$.

Probing impenetrable scatterers with few waves: J. Li, H. Liu, M. Petrini, L. Rondi, J. Xiao, Y. Wang . . .

Proof structure

- Quantify everything in corner scattering proofs
- Use fact that total wave does not vanish in domain of interest
- Propagate smallness from ∞ to $P \cup P'$

Far-field to near-field to boundary

 A quantitative version of Rellich's theorem + unique continuation

Far-field to near-field to boundary

- A quantitative version of Rellich's theorem + unique continuation
- Isakov-type theorem + chain of balls + smoothness of u^s

Proposition

Let u^s and u'^s be the scattered waves caused by u^i . If $Q = ch(P \cup P')$ and $\|u^s_{\infty} - u'^s_{\infty}\|_{L^2(\mathbb{S}^{n-1})} < \varepsilon$ then

$$\sup_{\partial Q} |u-u'| + |\nabla(u-u')| \leq C \left(\ln \ln \left\| u_{\infty}^{s} - u_{\infty}^{\prime s} \right\|_{2}^{-1} \right)^{-1/2}$$

Far-field to near-field to boundary

- A quantitative version of Rellich's theorem + unique continuation
- Isakov-type theorem + chain of balls + smoothness of u^s

Proposition

Let u^s and u'^s be the scattered waves caused by u^i . If $Q = ch(P \cup P')$ and $\|u^s_{\infty} - u'^s_{\infty}\|_{L^2(\mathbb{S}^{n-1})} < \varepsilon$ then

$$\sup_{\partial Q} |u-u'| + |\nabla(u-u')| \le C \left(\ln \ln \left\| u_{\infty}^{s} - u_{\infty}^{\prime s} \right\|_{2}^{-1} \right)^{-1/2}$$

- $(\Delta + k^2)(u^s u'^s) = f$ with f supported on $P \cup P'$.
- ▶ second logarithm arises from continuing $u^s u'^s$ from the set where $f \equiv 0$ to its boundary by smoothness.

Boundary to neighbourhood of corner

Let $Q = ch(P \cap P')$, $Q_h = Q \cap B(x_c, h)$, h < d(P, P'). If u_0 is a CGO solution for V then

$$k^2 \int_{Q_h} V u' u_0 dx = \int_{\partial Q_h} (u_0 \partial_\nu (u' - u) - (u' - u) \partial_\nu u_0) d\sigma.$$

Estimates

$$k^2 \int_{Q_h} V u' u_0 dx = \int_{\partial Q_h} (u_0 \partial_\nu (u' - u) - (u' - u) \partial_\nu u_0) d\sigma.$$

Split LHS as before and use $u' \neq 0$ everywhere in Q_h . CGO and Hölder estimates give

$$C \le |\rho|^n \left| \int_{\mathfrak{P}} e^{\rho \cdot x} dx \right| \le h^{-1} |\rho|^{-\delta} + |\rho|^3 \left(\ln \ln \left\| u_{\infty}^s - u_{\infty}'^s \right\|_2^{-1} \right)^{-1/2}.$$

The claim

$$d_{H}(P,P') \leq C(\ln \ln \|A_{u^{i}} - A'_{u^{i}}\|_{2}^{-1})^{-\eta}$$

follows since h < d(P, P').

More recent work: lower bound for far-field pattern

Theorem (B., Liu, preprint) Let u^i be a normalized Herglotz wave,

$$u^{i}(x) = \int_{\mathbb{S}^{n-1}} e^{ik\theta \cdot x} g(\theta) d\sigma(\theta), \qquad \|g\|_{L^{2}(\mathbb{S}^{n-1})} = 1,$$

and let $V = \chi_P \varphi$ be admissible.

More recent work: lower bound for far-field pattern

Theorem (B., Liu, preprint) Let u^i be a normalized Herglotz wave,

$$u^{i}(x) = \int_{\mathbb{S}^{n-1}} e^{ik\theta \cdot x} g(\theta) d\sigma(\theta), \qquad \|g\|_{L^{2}(\mathbb{S}^{n-1})} = 1,$$

and let $V = \chi_P \varphi$ be admissible. Then

$$\|u_{\infty}^{s}\|_{L^{2}(\mathbb{S}^{n-1})} \geq C_{\|P_{N}\|,V} > 0$$

where the Taylor expansion of u^i at the corner x_c begins with P_N , and $||P_N|| = \int_{\mathbb{S}^{n-1}} |P_N(\theta)| d\sigma(\theta)$.

F. Cakoni: "Incident waves that approximate transmission eigenfunctions produce arbitrarily small far-field patterns."

F. Cakoni: "Incident waves that approximate transmission eigenfunctions produce arbitrarily small far-field patterns."

Well-known: Herglotz waves can approximate transmission eigenfunctions.

F. Cakoni: "Incident waves that approximate transmission eigenfunctions produce arbitrarily small far-field patterns."

Well-known: Herglotz waves can approximate transmission eigenfunctions.

So, mistake in our proof?

F. Cakoni: "Incident waves that approximate transmission eigenfunctions produce arbitrarily small far-field patterns."

Well-known: Herglotz waves can approximate transmission eigenfunctions.

So, mistake in our proof?

– No: $C = C_{||P_N||}$, so the bound becomes arbitrarily small for incident waves that have small value at the corner.

From contradiction to inspiration

Theorem (B., Liu, preprint)

Let the potential $V = \chi_P \varphi$ be admissible and $P \subset \Omega$. Let v be a transmission eigenfunction

$$egin{aligned} & (\Delta+k^2)v=0, & \Omega\ & (\Delta+k^2(1+V))w=0, & \Omega\ & w-v\in H^2_0(\Omega), & \|v\|_{L^2(\Omega)}=1. \end{aligned}$$

From contradiction to inspiration

Theorem (B., Liu, preprint)

Let the potential $V = \chi_P \varphi$ be admissible and $P \subset \Omega$. Let v be a transmission eigenfunction

$$egin{aligned} & (\Delta+k^2)v=0, & \Omega\ & (\Delta+k^2(1+V))w=0, & \Omega\ & w-v\in H^2_0(\Omega), & \|v\|_{L^2(\Omega)}=1. \end{aligned}$$

If v can be approximated by a sequence of Herglotz waves with uniformly L^2 -bounded kernels g, then

$$\lim_{r \to 0} \frac{1}{m(B(x_c, r))} \int_{B(x_c, r)} |v(x)| \, dx = 0$$

at every corner point x_c of supp V.

Transmission eigenfunction localization

Ongoing numerical investigation with Y. Wang and H. Liu:

Conclusions

- sampling methods fail when no scattering
- avoid transmission eigenvalues \implies have scattering
- corners always scatter despite having transmission eigenvalues
- single wave inverse scattering: polygonal support uniqueness
- Iower bound for far-field pattern
- transmission eigenfunction localization

Thank you for your attention!