
Topics in Corner Scattering:
Non-Scattering Waves, Potential Probing with a Single Incident

Wave, and the Interior Transmission Problem

Eemeli Bl̊asten

Institute for Advanced Study,
The Hong Kong University of Science and Technology

NCTS PDE and Analysis Seminar
National Center for Theoretical Sciences,

National Taiwan University

March 9, 2017

1 / 27



Scattering theory
Lord Rutherford’s gold-foil experiment
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Scattering theory
Rutherford experiment’s conclusions

measurement + a-priori information = conclusion
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Scattering theory
Fixed frequency scattering

V (x)

ui (x)

us(x)

The total wave u satisfies(
∆ + k2(1 + V )

)
u = 0,

V models a perturbation of the background,

u = ui (x)

incident wave

+ us(x)

scattered wave
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Scattering theory

=

+
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Mathematical scattering theory: measurements

Measurement: Aui is the far-field pattern of the scattered wave

us(x) = eik|x |

|x |(n−1)/2 Aui

( x
|x |

)
+O

(
1
|x |n/2

)
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Inverse problem

Given the map ui 7→ Aui , recover V or its support Ω.

Early methods (< 85’)
I optimization and minimization methods

Sampling methods
I gives condition on measurements for x ∈ supp V
I compared to before: fast! works reliably!
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Sampling methods

I 96 Colton – Kirsh: linear sampling method (points)

I 98 Ikehata: probing method (curve)
I . . . Luke, Potthast, Sylvester, Kusiak: range test, no response

test (sets)
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Factorization method

Sampling methods gave only1 sufficient conditions for x ∈ supp V .

1except Ikehata’s probing method
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Factorization method

Kirsch 90’s, Grinberg 00’s: factorization method. Gives necessary
and sufficient conditions.
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Factorization method

Idea:

ui (x) =
∫
Sn−1

eikθ·x g(θ)dσ(θ), g ∈ L2(Sn−1)

us(x) = eik|x |

|x |(n−1)/2 Ag

( x
|x |

)
+O

(
1
|x |n/2

)
the far-field operator

F : L2(Sn−1)→ L2(Sn−1), Fg = Ag

is factored
F = G T G∗

G compact, T isomorphism. The range of G can be characterized
and gives supp V .
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Everything solved?

NO!
If ker F 6= {0} then the above methods fail!

∃g ∈ ker F implies ∃v : Ω→ C

(∆ + k2)v = 0, Ω
(∆ + k2(1 + V ))u = 0, Ω

u − v ∈ H2
0 (Ω)

k2 is an interior transmission eigenvalue (ITE)
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Kernel of scattering operator

Let w i be the incident wave

w i (x) =
∫
Sn−1

eikθ·x g(θ)dσ(θ)

and assume g ∈ ker F . Then Ag ≡ 0 for the scattered wave w s .

Rellich’s lemma and unique continuation imply w s(x) = 0 for
x ∈ Rn \ supp V .

Hence v = w i and u = w i + w s solve the interior transmission
problem.
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Some ITE history

I 86’, 88’ Kirsch, Colton–Monk: ITE problem posed
I 89’, 91’ Colton–Kirsch–Päivärinta, Rynne–Sleeman:

discreteness of ITE

I 91’–08’ nothing. . .
I 07’, 09’ Cakoni–Colton–Monk, Cakoni–Colton–Haddar:

qualitative information about V from ITE’s
I 08’ Päivärinta–Sylvester: existence for general scatterers
I 10’ Cakoni–Gintides–Haddar: infinitely many ITE’s
I 10’ Cakoni–Colton–Haddar: ITE’s can be deduced from

far-field data
I 10’+: explosion of interest
I interest shifting to “Steklov eigenvalues”
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Interior transmission eigenvalues VS sampling methods

Recall: ker F 6= {0} =⇒ k2 ITE

Sampling method users avoid ITE’s

Are they too careful?

I Colton–Monk 88: supp V compact, V radial, k2 ITE
=⇒ ker F 6= {0}

I Regge, Newton, Sabatier, Grinevich, Manakov, Novikov
50’s – 90’s: radial potentials transparent at a fixed k2 i.e.
=⇒ ker F = L2(Sn−1)
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Corner scattering

I B.–Päivärinta–Sylvester 14: V = χ[0,∞[nϕ, ϕ(0) 6= 0 always
scatters, despite having interior transmission eigenvalues

k2 ITE and ker F = {0}
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Proof sketch
Rellich’s theorem and unique continuation imply

k2
∫

Vui u0dx = 0

if (∆ + k2(1 + V ))u0 = 0 near supp V .

In simple case

ui (x) = ui (0) + ui
r (x)

u0(x) = eρ·x (1 + ψ(x))
V (x) = χ[0,∞[n (x)(ϕ(0) + ϕr (x))

Hölder estimates give

C
∣∣∣ϕ(0)ui (0)

∣∣∣ |ρ|−n ≤
∣∣∣∣∣ϕ(0)ui (0)

∫
[0,∞[n

eρ·x dx
∣∣∣∣∣ ≤ C |ρ|−n−δ

if ‖ψ‖p ≤ C |ρ|−n/p−ε.
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Newer corner scattering results
I Päivärinta–Salo–Vesalainen: 2D any angle, 3D almost any

spherical cone
I Hu–Salo–Vesalainen: smoothness reduction, new arguments,

polygonal scatterer probing
I Elschner–Hu: 3D any domain having two faces meet at an

angle

Injectivity of support probing:

Theorem
Let P,P ′ be convex polygons and V = χPϕ, V = χP′ϕ

′ for
admissible functions ϕ,ϕ′. Then

P 6= P ′ =⇒ FV (g) 6= FV ′(g) ∀g 6= 0

Any single incident wave determines P in the class of polygonal
penetrable scatterers.
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Stability of polygonal scatterer probing

Theorem (B., Liu, preprint)
Let ui be an incident wave with ui (x) 6= 0 and let V = χPϕ,
V ′ = χP′ϕ

′ be admissible. If∥∥Aui − A′ui
∥∥

L2(Sn−1) < ε

then
dH(P,P ′) ≤ C(ln ln

∥∥Aui − A′ui
∥∥−1

2 )−η

for some η > 0.

Probing impenetrable scatterers with few waves: J. Li, H. Liu,
M. Petrini, L. Rondi, J. Xiao, Y. Wang . . .
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Proof structure

I Quantify everything in corner scattering proofs
I Use fact that total wave does not vanish in domain of interest
I Propagate smallness from ∞ to P ∪ P ′
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Far-field to near-field to boundary

I A quantitative version of Rellich’s theorem + unique
continuation

I Isakov-type theorem + chain of balls + smoothness of us

Proposition
Let us and u′s be the scattered waves caused by ui . If
Q = ch(P ∪ P ′) and ‖us

∞ − u′s∞‖L2(Sn−1) < ε then

sup
∂Q

∣∣u − u′
∣∣+

∣∣∇(u − u′)
∣∣ ≤ C

(
ln ln

∥∥us
∞ − u′s∞

∥∥−1
2

)−1/2
.

I (∆ + k2)(us − u′s) = f with f supported on P ∪ P ′.
I second logarithm arises from continuing us − u′s from the set

where f ≡ 0 to its boundary by smoothness.
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Boundary to neighbourhood of corner

Let Q = ch(P ∩ P ′), Qh = Q ∩ B(xc , h), h < d(P,P ′). If u0 is a
CGO solution for V then

k2
∫

Qh
Vu′u0dx =

∫
∂Qh

(u0∂ν(u′ − u)− (u′ − u)∂νu0)dσ.

20 / 27



Estimates

k2
∫

Qh
Vu′u0dx =

∫
∂Qh

(u0∂ν(u′ − u)− (u′ − u)∂νu0)dσ.

Split LHS as before and use u′ 6= 0 everywhere in Qh. CGO and
Hölder estimates give

C ≤ |ρ|n
∣∣∣∣∫

P
eρ·x dx

∣∣∣∣ ≤ h−1 |ρ|−δ + |ρ|3 (ln ln
∥∥us
∞ − u′s∞

∥∥−1
2 )−1/2.

The claim

dH(P,P ′) ≤ C(ln ln
∥∥Aui − A′ui

∥∥−1
2 )−η

follows since h < d(P,P ′).
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More recent work: lower bound for far-field pattern

Theorem (B., Liu, preprint)
Let ui be a normalized Herglotz wave,

ui (x) =
∫
Sn−1

eikθ·x g(θ)dσ(θ), ‖g‖L2(Sn−1) = 1,

and let V = χPϕ be admissible.

Then

‖us
∞‖L2(Sn−1) ≥ C‖PN‖,V > 0

where the Taylor expansion of ui at the corner xc begins with PN ,
and ‖PN‖ =

∫
Sn−1 |PN(θ)| dσ(θ).
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Mistake?

F. Cakoni: “Incident waves that approx-
imate transmission eigenfunctions pro-
duce arbitrarily small far-field patterns.”

Well-known: Herglotz waves can approximate transmission
eigenfunctions.

So, mistake in our proof?
– No: C = C‖PN‖, so the bound becomes arbitrarily small for
incident waves that have small value at the corner.
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From contradiction to inspiration

Theorem (B., Liu, preprint)
Let the potential V = χPϕ be admissible and P ⊂ Ω. Let v be a
transmission eigenfunction

(∆ + k2)v = 0, Ω
(∆ + k2(1 + V ))w = 0, Ω

w − v ∈ H2
0 (Ω), ‖v‖L2(Ω) = 1.

If v can be approximated by a sequence of Herglotz waves with
uniformly L2-bounded kernels g , then

lim
r→0

1
m(B(xc , r))

∫
B(xc ,r)

|v(x)| dx = 0

at every corner point xc of supp V .
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Transmission eigenfunction localization

Ongoing numerical investigation with Y. Wang and H. Liu:
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Conclusions

I sampling methods fail when no scattering
I avoid transmission eigenvalues =⇒ have scattering
I corners always scatter — despite having transmission

eigenvalues
I single wave inverse scattering: polygonal support uniqueness
I lower bound for far-field pattern
I transmission eigenfunction localization
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Thank you for your attention!
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